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Problem 3.47

Supersymmetry. Consider the two operators

Â = i
p̂√
2m

+W (x) and Â† = −i p̂√
2m

+W (x), (3.116)

for some function W (x). These may be multiplied in either order to construct two Hamiltonians:

Ĥ1 ≡ Â†Â =
p̂2

2m
+ V1(x) and Ĥ2 ≡ ÂÂ† =

p̂2

2m
+ V2(x); (3.117)

V1 and V2 are called supersymmetric partner potentials. The energies and eigenstates of Ĥ1

and Ĥ2 are related in interesting ways.44

(a) Find the potentials V1(x) and V2(x), in terms of the superpotential, W (x).

(b) Show that if ψ
(1)
n is an eigenstate of Ĥ1 with eigenvalue E

(1)
n , then Âψ

(1)
n is an eigenstate of

Ĥ2 with the same eigenvalue. Similarly, show that if ψ
(2)
n (x) is an eigenstate of Ĥ2 with

eigenvalue E
(2)
n , then Â†ψ

(2)
n is an eigenstate of Ĥ1 with the same eigenvalue. The two

Hamiltonians therefore have essentially identical spectra.

(c) One ordinarily chooses W (x) such that the ground state of Ĥ1 satisfies

Âψ
(1)
0 (x) = 0, (3.118)

and hence E
(1)
0 = 0. Use this to find the superpotential W (x), in terms of the ground state

wave function, ψ
(1)
0 (x). (The fact that Â annihilates ψ

(1)
0 means that Ĥ2 actually has one

less eigenstate than Ĥ1, and is missing the eigenvalue E
(1)
0 .)

(d) Consider the Dirac delta function well,

V1(x) =
mα2

2ℏ2
− αδ(x), (3.119)

(the constant term, mα2/2ℏ2, is included so that E
(1)
0 = 0). It has a single bound state

(Equation 2.132)

ψ
(1)
0 (x) =

√
mα

ℏ
exp

[
−mα

ℏ2
|x|

]
. (3.120)

Use the results of parts (a) and (c), and Problem 2.23(b), to determine the superpotential
W (x) and the partner potential V2(x). This partner potential is one that you will likely
recognize, and while it has no bound states, the supersymmetry between these two systems
explains the fact that their reflection and transmission coefficients are identical (see the last
paragraph of Section 2.5.2).

Solution

44Fred Cooper, Avinash Khare, and Uday Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific,
Singapore, 2001.
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Part (a)

To determine Ĥ1, let it act on a test function f(x).

Ĥ1f(x) = Â†Âf(x) =

[
−i p̂√

2m
+W (x)

] [
i

p̂√
2m

+W (x)

]
f(x)

=

[
p̂2

2m
− i

p̂√
2m

W (x) + iW (x)
p̂√
2m

+ [W (x)]2
]
f(x)

=
p̂2

2m
[f(x)]− i

p̂√
2m

[W (x)f(x)] + iW (x)
p̂√
2m

[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)]− i√

2m

(
−iℏ d

dx

)
[W (x)f(x)] +

i√
2m

W (x)

(
−iℏ d

dx

)
[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)]− ℏ√

2m

d

dx
[W (x)f(x)] +

ℏ√
2m

W (x)
d

dx
[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)]− ℏ√

2m

dW

dx
f(x)−

�������ℏ√
2m

W (x)
df

dx
+
�������ℏ√

2m
W (x)

df

dx
+ [W (x)]2f(x)

=

[
p̂2

2m
− ℏ√

2m

dW

dx
+ [W (x)]2

]
f(x)

Therefore,

V1(x) = − ℏ√
2m

dW

dx
+ [W (x)]2.

Find Ĥ2 in the same way.

Ĥ2f(x) = ÂÂ†f(x) =

[
i

p̂√
2m

+W (x)

] [
−i p̂√

2m
+W (x)

]
f(x)

=

[
p̂2

2m
+ i

p̂√
2m

W (x)− iW (x)
p̂√
2m

+ [W (x)]2
]
f(x)

=
p̂2

2m
[f(x)] + i

p̂√
2m

[W (x)f(x)]− iW (x)
p̂√
2m

[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)] +

i√
2m

(
−iℏ d

dx

)
[W (x)f(x)]− i√

2m
W (x)

(
−iℏ d

dx

)
[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)] +

ℏ√
2m

d

dx
[W (x)f(x)]− ℏ√

2m
W (x)

d

dx
[f(x)] + [W (x)]2f(x)

=
p̂2

2m
[f(x)] +

ℏ√
2m

dW

dx
f(x) +

�������ℏ√
2m

W (x)
df

dx
−
�������ℏ√

2m
W (x)

df

dx
+ [W (x)]2f(x)

=

[
p̂2

2m
+

ℏ√
2m

dW

dx
+ [W (x)]2

]
f(x)

Therefore,

V2(x) =
ℏ√
2m

dW

dx
+ [W (x)]2.
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Part (b)

Suppose that ψ
(1)
n is an eigenstate of Ĥ1 with eigenvalue E

(1)
n .

Ĥ1ψ
(1)
n = E(1)

n ψ(1)
n

Show that Âψ
(1)
n is an eigenstate of Ĥ2 with eigenvalue E

(1)
n .

Ĥ2

[
Âψ(1)

n

]
= ÂÂ†

[
Âψ(1)

n

]
= Â

[
Â†Âψ(1)

n

]
= Â

[
Ĥ1ψ

(1)
n

]
= Â

[
E(1)
n ψ(1)

n

]
= E(1)

n

[
Âψ(1)

n

]
Now suppose that ψ

(2)
n is an eigenstate of Ĥ2 with eigenvalue E

(2)
n .

Ĥ2ψ
(2)
n = E(2)

n ψ(2)
n

Show that Â†ψ
(2)
n is an eigenstate of Ĥ1 with eigenvalue E

(2)
n .

Ĥ1

[
Â†ψ(2)

n

]
= Â†Â

[
Â†ψ(2)

n

]
= Â†

[
ÂÂ†ψ(2)

n

]
= Â†

[
Ĥ2ψ

(2)
n

]
= Â†

[
E(2)
n ψ(2)

n

]
= E(2)

n

[
Â†ψ(2)

n

]
Part (c)

Choose the superpotential W (x) so that

0 = Âψ
(1)
0 (x)

=

[
i

p̂√
2m

+W (x)

]
ψ
(1)
0 (x)

=

[
i√
2m

(
−iℏ d

dx

)
+W (x)

]
ψ
(1)
0 (x)

=

[
ℏ√
2m

d

dx
+W (x)

]
ψ
(1)
0 (x)

=
ℏ√
2m

dψ
(1)
0

dx
+W (x)ψ

(1)
0 (x).
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Solve for W (x).

W (x) = − ℏ√
2m

dψ
(1)
0
dx

ψ
(1)
0 (x)

Therefore,

W (x) = − ℏ√
2m

d

dx
ln
∣∣∣ψ(1)

0 (x)
∣∣∣ .

Part (d)

For the given bound state,

ψ
(1)
0 (x) =

√
mα

ℏ
exp

(
−mα

ℏ2
|x|

)
,

which is always positive, the superpotential is

W (x) = − ℏ√
2m

d

dx
lnψ

(1)
0 (x)

= − ℏ√
2m

d

dx
ln

[√
mα

ℏ
exp

(
−mα

ℏ2
|x|

)]

= − ℏ√
2m

d

dx

[
ln

√
mα

ℏ
+ ln exp

(
−mα

ℏ2
|x|

)]

= − ℏ√
2m

d

dx

[
ln

√
mα

ℏ
+
(
−mα

ℏ2
|x|

)]

= − ℏ√
2m

[
−mα

ℏ2

(
d

dx
|x|

)]

=
α

ℏ

√
m

2

d

dx

(√
x2

)
=
α

ℏ

√
m

2

[
1

2

(
x2

)−1/2 · d
dx

(x2)

]

=
α

ℏ

√
m

2

[
1

2
√
x2

· (2x)
]

=
α

ℏ

√
m

2

(
x

|x|

)

=
α

ℏ

√
m

2
sgnx

=
α

ℏ

√
m

2
[θ(x)− θ(−x)] ,
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so the corresponding supersymmetric partner potential is

V2(x) =
ℏ√
2m

dW

dx
+ [W (x)]2

=
ℏ√
2m

d

dx

{
α

ℏ

√
m

2
[θ(x)− θ(−x)]

}
+

(
α

ℏ

√
m

2
sgnx

)2

=
ℏ√
2m

α

ℏ

√
m

2

[
d

dx
θ(x)− d

dx
θ(−x)

]
+
α2

ℏ2
m

2

=
α

2

[
θ′(x)− θ′(−x) · d

dx
(−x)

]
+
α2

ℏ2
m

2

=
α

2
[δ(x)− δ(−x) · (−1)] +

α2

ℏ2
m

2

=
α

2
[δ(x) + δ(−x)] + α2

ℏ2
m

2

=
α

2

[
δ(x) +

1

|−1|
δ(x)

]
+
α2

ℏ2
m

2

=
α

2
[δ(x) + δ(x)] +

α2

ℏ2
m

2

=
mα2

2ℏ2
+ αδ(x).

This is a delta-function barrier. See the bottom of page 68.

www.stemjock.com


